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I. SUPERCONDUCTORS IN A MAGNETIC FIELD - DOMAIN WALL ENERGY

Here we begin to consider how a superconductor compromises with a magnetic field in the context of
Ginzburg-Landau theory.

A. Intermediate State

Superconductors of type-I will go in to an “intermediate state” when exposed to a magnetic field. The
magnetic field is channeled in to normal domains, where the magnetic field value is the thermodynamic
critical field Hc, leaving other regions in the Meissner state with H = 0. This lamenar structure can be
quite complicated, depending on sample geometry and pinning sites (to be discussed later). Pictures of
these intricate domain structures are available on the class web site.
Superconductors of type-II divide the magnetic field into finer and finer pieces until each piece carries
exactly one flux quantum Φ0 = h/2e in a region surrounded by superconducting material.

The difference between these two cases comes about from the energy cost of creating a superconductor
/ normal (S/N) interface. Consider the order parameter and magnetic field profile in a cross section
through the S/N interface, and call this coordinate the x direction. In the type-I case (defined by
κ = λeff/ξGL << 1) the magnetic field persists well into the superconducting side of the interface,
despite the fact that the GL order parameter is suppressed over a long length scale there. This situation,
namely the loss of condensation energy over an extended length and at the same time the generation
of strong screening currents to shield out the magnetic field on short length scales, gives rise to a net
positive energy cost for creation of the S/N interface.

In the type-II case (defined by κ = λeff/ξGL >> 1) the GL order parameter persists right up to the
interface, whereas the magnetic field is suppressed over a long length scale. In this way the condensation
energy of the superconductor is largely maintained, and the screening currents are relatively weak,
leading to a minimum of kinetic energy cost. This yields a net negative interface energy, meaning that
such interfaces will proliferate spontaneously. Their proliferation is stopped only by the quantum limit
of magnetic field dilution, when each “normal region” carries exactly one quantum of magnetic flux
Φ0 = h/2e.

One can define the domain wall energy per unit area as follows,
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dx, where h(x) is the microscopic magnetic field. Note that δ can be

positive or negative, depending on the competition between magnetic and condensation energies.
The integrand is zero both in the uniform normal metal and the uniform superconductor, picking up
contributions only in the S/N interface.

Take the origin (x = 0) to be at the normal metal side of the interface. Using the following field and
order parameter profiles we can calculate the S/N energy:
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Note that this h(x) and ψ(x) profile was not determined self-consistently from the two coupled nonlinear
GL equations. Hence it will not give exact results for the δ calculation.
The outcome for the S/N interace thickness is,
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Type-II κ >> 1 has δ = − 3
2λ. The exact GL result is −1.104λ.

The crossover in this approximate calculation δ = 0 occurs at κ = 25
√
2

36 = 0.98

The exact value for the crossover between type-I and type-II is at κ = 1/
√
2.

B. Critical current of a filamentary superconductor

Consider a very thin quasi-one-dimensional cylindrical current-carrying superconducting filament.
The diameter d is much less than the GL coherence length ξGL. In this case it is unlikely that the order
parameter will vary across the width of the wire, and also unlikely it will vary longitudinally if the wire
is sufficiently short. In this case we can take the magnitude of the order parameter as constant, and
attribute all of the spatial variation to the phase,
ψ(x) = |ψ|eiϕ(r), where |ψ| is constant. In this case the current is given by,

J⃗ = e∗
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Minimizing the free energy expansion with respect to |ψ| yields,
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The GL order parameter is suppressed in the presence of a super-current. This is often refered to as
current-induced “de-pairing”, although there is no notion of pairing in GL theory. Note that the GL
coherence length diverges as Tc is approached. This means that near Tc even a small current will be
sufficient to produce significant de-pairing, making the superconductor very nonlinear.

The resulting super-current is now nonlinear in the super-electron velocity:
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As the super-electron velocity increases there is a deviation from linearity (i.e. Js ∝ vs), with a cubic
correction. If an ac super-electron velocity is induced, the current density will show a third harmonic
response.

The current density as a function of vs goes through maximum at vs = vc with v
2
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3m∗2ξ2GL
and the

peak is called the (de-pairing) critical current density Jc, Jc = ( 23 )
3/2 Hc

λeff
.

The result Jc ≈ Hc

λeff
is called Silsbee’s rule. It says that when the de-pairing critical current flows in a

superconducting cylindrical wire, the surface field reaches the thermodynamic critical field.
The value of the order parameter at the critical current density is |ψc|2 = 2

3 |ψ∞|2.

The critical current temperature dependence near Tc is Hc(t) ∝ (1− t)3/2.

C. Appearance of Resistance in a 1D Superconducting Wire

How does resistance develop in a filamentary superconducting wire as the transition temperature is
approached from below? The current flow corresponds to a twist in the phase of the order parameter
with position. The GL order parameter can be written as ψ(x) = |ψ|eiqx which can be thought of as
a helix of pitch 2π/q. In the absence of an external vector potential, the superfluid velocity is simply
vs ∝ ℏq. The super-current is Js = e∗|ψ|2vs ∝ |ψ|2ℏq.

In the zero-resistance current-carrying state a segment of the wire has constant phase ϕ1 at one end
and a constant phase ϕ2 at the other, with a continuously varying-in-x phase profile in between. When
a voltage appears the phase difference between the two ends must increase with time at a steady rate in
a manner given by the AC Josephson equation,
d(ϕ2−ϕ1)

dt = 2eV
ℏ , where V is the longitudinal voltage drop V = V2 − V1.

How does this situation develop? The voltage requires that phase winding is continuously “cranked
in” to the phase helix. This means that an electric field will appear in the superconducting wire. The

electric field will accelerate the superfluid, as we saw in the London equation, E⃗ = ∂(ΛJ⃗s)/∂t, or in
other words dvs

dt = eE/m. But we have seen that there is a limit to the acceleration, namely the critical

http://www.encyclopedia-magnetica.com/doku.php/silsbee_rule
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velocity vc. When this velocity is reached the solution breaks down and something new must happen.
The resistance of the wire does not go to its normal-state value, but remains much less than that, hence
this is NOT what happens. Somehow the phase windings must get “lost” to keep vs < vc in steady
state.

The new effect is created by a thermal fluctuation. Near Tc there is thermal energy kBT available to
be borrowed by the superconducting wire from the thermal bath. This energy is used to suppress the
magnitude of the GL order parameter in a localized region of size ξGL. In this case the super-current
density Js ∝ |ψ|2 dϕdx = const ∝ I has |ψ|2 → 0 so that dϕ

dx grows suddenly and a full 2π phase winding

is lost. The superconductor then quickly recovers back to its initial value of |ψ|2 at that location.
This “phase slip center” acts as a local and fleeting spot to remove a 2π phase winding and establish a
steady state voltage drop. The number of such phase slip events per unit time will determine the voltage.

Langer-Ambegaokar-McCumber-Halperin (LAMH) estimated that the free energy required to make

such a fluctuation is ∆F0 = 8
√
2

3 µ0H
2
cAξGL(T ), where A is the cross-sectional area of the wire. This

is basically the condensation energy density times the volume of the fluctuation along the wire. The
resistance is found to be
limI→0

V
I = πℏ2Ω

2e2kBT
e−∆F0/kBT , where Ω is an attempt frequency (i.e. the rate at which the system

attempts to borrow thermal energy from the bath). Note that ∆F0 → 0 as T → Tc as ∆F0 ∼ (1− t)3/2,
hence the number of phase slips will increase as Tc is approached from below, resulting in a higher voltage
drop along the wire. This theory is found to be in agreement with data on narrow Sn whiskers through
about 5 decades in resistance, as seen on the class web site. This is an interesting situation in which a
superconducting wire goes into an kind of intermediate state that has many frequent and brief excursions
into the normal state, but only over a finite length (ξGL), and for short time.

The class website also has an extensive discussion of the many contributions to Superconducting In-
ductance, including geometric, kinetic, Josephson, vortex, etc. There are other documents on microwave
kinetic inductance detectors, as well as nonlinear kinetic inductance devices.

https://www.physics.umd.edu/courses/Phys798C/AnlageSpring24/LAMH Fit ro R(T).pdf
https://www.physics.umd.edu/courses/Phys798C/AnlageSpring24/Superconducting_Inductance.pdf
https://www.physics.umd.edu/courses/Phys798C/AnlageSpring24/Superconducting_Inductance.pdf
https://www.physics.umd.edu/courses/Phys798C/AnlageSpring24/Microwave Kinetic Inductance Detectors for Astronomy.pdf
https://www.physics.umd.edu/courses/Phys798C/AnlageSpring24/Microwave Kinetic Inductance Detectors for Astronomy.pdf
https://www.physics.umd.edu/courses/Phys798C/AnlageSpring24/Nonlinear kinetic inductance in TiN and NbTiN microresonators and transmission lines.pdf
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